Triangle inequality

Mason Kamb asked a question about the triangle inequality. I think this is a formulation of his conjecture.

Theorem 1. Let V be a real vector space (not necessisarily finite dimensional). Suppose $f: V \longrightarrow \mathbb{R}$ satisfies:

1. $f(v)>0 \Longleftrightarrow v \neq 0$.
2. $f(t v)=|t| f(v), t \in \mathbb{R}$.
3. $\{v: f(v)<1\}$ is convex.

Then f satisfies the triangle inquality:

$$
f(u+v) \leq f(u)+f(v) .
$$

Proof. Let $B=\{v: f(v)<1\}$. By rescaling we can assume $u, v \in B$. Let $\epsilon>0$ be given. Then there are numbers s, t that make the following inequalities valid:

$$
\begin{align*}
& 0<f(u)<s<f(u)+\epsilon<1 \tag{1}\\
& 0<f(v)<t<f(v)+\epsilon<1 \tag{2}
\end{align*}
$$

Let

$$
\tilde{u}=\frac{u}{s}, \tilde{v}=\frac{v}{t} .
$$

Then $\tilde{u}, \tilde{v}, s \tilde{u}, t \tilde{v} \in B$. By convexity

$$
\frac{s \tilde{u}+t \tilde{v}}{s+t} \in B .
$$

Hence $u+v=s \tilde{u}+t \tilde{v} \in(s+t) B$. So

$$
f(u+v)<s+t<f(u)+f(v)+2 \epsilon .
$$

Since ϵ is arbitrary the theorem is true.
We can use f to define a norm on V.

